8th IST-IME Meeting
8th IST-IME Meeting
An embedding of the
There is a well-established analogy between minimal surfaces and a class of solutions of the scalar two-phase Allen-Cahn equation, discovered by De Giorgi in the 70s, that has been thoroughly understood in the decade 2000-2010. The basic object in this case is the solution of a simple ODE that is analogous to a plane.
On the other hand for three or more equally preferred phases a vector order parameter is required, and the basic object is a PDE solution of the Allen-Cahn system that connects the three phases that is analogous to a singular minimal cone. Such solutions are fully understood in the presence of symmetry (general reflection point group), but not at all in the general case.
In this lecture I will begin by stating the triple junction problem on the plane. Then I will present some joint work with Zhiyuan Geng that is motivated by this problem, which hopefully will be useful for its solution.
We consider a reaction diffusion equation in a bounded domain with logistic reaction term of the type
I will describe a classification of the spectra of nonautonomous delay equations. This is joint work with Claudia Valls.
Inertial manifold theory, saddle point property and exponential dichotomy have been treated as different topics in the literature with different proofs.
As a common feature, they all have the purpose of ‘splitting’ the space to understand the dynamics. We present a unified proof for the inertial manifold theorem, which as a local consequence yields the saddle-point property with a fine structure of invariant manifolds and the roughness of exponential dichotomy.
Self-similar solutions for the modified Korteweg-de Vries equation are of both physical and mathematical interest. They describe the asymptotic behavior of solutions for large times and blow-up at the initial time. Due to their scaling invariance, they present several critical features (time decay, spatial decay and regularity), which means that the existing theory is not applicable. In this talk, I will show that one can define the flow around these solutions. Moreover, given any smooth perturbation, one can build a solution to the mKdV which behaves, at the blow-up time, as the self-similar solution plus the perturbation. This is joint work with R. Côte and L. Vega.
We introduce an infinite dimensional system of ordinary differential equations modelling silicosis, and discuss results on existence, uniqueness, basic properties of solutions, and, for a family of coefficients, the structure of equilibria and their linear stability properties, which allow us to understand the local bifurcation of equilibria.
The reported results are based on joint works with P. Antunes, M. Drmota, M. Grinfeld, J. Pinto and R. Sasportes.
A Cauchy problem for a dissipative fourth order parabolic equation in
Suitably adapted considerations lead to corresponding results for a modified Swift-Hohenberg equation in
The study of linear cocycles and their Lyapunov exponents in Ergodic Theory has an important interface with study of spectral properties of discrete Schrödinger operators in Mathematical Physics, namely via the regularity of the Lyapunov exponents of the Schrödinger cocycles which relate to the spectral properties of the associated Schrödinger operators. Many results have been obtained so far on the continuity of the Lyapunov exponents for two main classes of linear cocycles: the class of quasi-periodic linear cocycles and the class of random linear cocycles. In this talk, I will survey on recent work with Ao Cai and Silvius Klein on a problem posed by Jiangong You about the stability of the Lyapunov exponents for random perturbations of quasi-periodic Schrödinger cocycles.
For a family of periodic systems of differential equations with (possibly infinite) delay and nonlinear impulses, sufficient conditions for the existence of at least one positive periodic solution are established.
The main technique used here is the Krasnoselskii fixed point theorem on cones.
Although fixed points methods have been extensively employed to show the existence of positive periodic solutions to scalar delay differential equations (DDEs), the literature on
Our criteria are applied to some classes of mathematical biology models, such as Nicholson-type systems with patch structure.
This a joint work with R. Figueroa (University of Santiago de Compostela) [1].
Two given orbits of a minimal circle homeomorphism
This talk is based on joint work with Pablo Guarino.
The existence and classification of formal deformation quantizations was solved by Kontsevich some 20 years ago, using his formality theorem. The corresponding non-formal problem seems to be much harder. I will discuss joint work with Alejandro Cabrera (UFRJ) where we introduce a notion of non-formal star product using various concepts from semi-classical analysis and show that their existence is obstructed.
Sturm global attractors
In 1991, Giorgio Fusco and Carlos Rocha explored general Sturm attractors, via meander permutations, and their recursive construction via successive pitchfork bifurcations. Also in 1991, however, Carlos discovered the simplest non-pitchforkable Sturm attractor, which turns out to be planar with 11 equilibria.
For dimension three, we present a geometric recursion of
Tools involve orders induced by the Morse structure and by nodal properties. Progress aspires to become joint work with Carlos Rocha.
Let
For
We give sufficient conditions on
Then we restrict to two space dimensions and show that one can associate a sort of spine to the diffuse interface: a connected network
The goal of this talk is to present, in a historical perspective, the contributions of Jorge Sotomayor (25/03/1942-07/01/2022) in two areas. Namely, his work in bifurcations of codimension one, two and three of vector fields, and the qualitative theory of principal lines on surfaces and hypersurfaces.
We consider smooth solutions of the wave equation, on a fixed black hole region of a subextremal Reissner-Nordström (asymptotically flat, de Sitter or anti-de Sitter) spacetime, whose restrictions to the event horizon have compact support. We provide criteria, in terms of surface gravities, for the waves to remain in
Mean-field games model systems with a large number of competing rational agents. Often these games are determined by a system of a Hamilton-Jacobi equation coupled with a transport or Fokker-Planck equation. In many cases, this system can be regarded as a monotone operator. This structure is at the basis of the uniqueness proof by Lasry and Lions. Using monotone operators techniques, we show how to prove the existence of solutions in a number of cases as well as how they can be used to construct numerical methods.
The space of almost complex structures on the
In dimension
This is all joint work with Aleksandar Milivojevic.
An integral representation result is obtained for the asymptotics of energies including both local and non-local terms, in the context of structured deformations.
Starting from an initial energy featuring a local bulk and interfacial contribution and a non-local measure of the jump discontinuities, an iterated limiting procedure is performed. First, the initial energy is relaxed to structured deformation, and then the measure of non-locality is sent to zero, with the effect of obtaining an explicit local energy in which the non-linear contribution of submacroscopic slips and separations is accounted for. Two terms, different in nature, emerge in the bulk part of the final energy: one coming from the initial bulk energy and one arising from the non-local contribution to the initial energy. This structure turns out to be particularly useful for studying mechanical phenomena such as yielding and hysteresis. Moreover, in the class of invertible structured deformations, applications to crystal plasticity are presented.
This is a joint work with Marco Morandotti, David R. Owen, and Elvira Zappale.
In this talk, we present some qualitative properties for solutions to an evolution problem that combines local and nonlocal diffusion operators acting in two different subdomains. The coupling takes place at the interface between these two domains in such a way that the resulting evolution problem is the gradient flow of an energy functional. We prove existence and uniqueness results, as well as that the model preserves the total mass of the initial condition. We also study the asymptotic behavior of the solutions. Besides, we show a suitable way to recover the heat equation at the whole domain from taking the limit at the nonlocal rescaled kernel. Finally, we propose a brief discussion about the extension of the problem to higher dimensions.
The aim of this lecturer is to study stability properties of standing wave solutions for the nonlinear Schrödinger equation (NLS) with power nonlinearity on tadpole or looping edge graphs (graphs consisting of a ring attached to one or many half-lines at one vertex, respectively). By considering general Neumann-Kirchhoff boundary conditions at the junction, also known as a
In this talk we outline the history of the equations for point vortices motion on curved surfaces that culminates with recent results obtained by Gustafsson. One of the consequences of these equations is the definition of the special “Steady Vortex Metric” in dimension 2 and its generalization to higher dimensions.
Dynamical systems generated by scalar reaction-diffusion equations enjoy special properties that lead to a very simple structure for the semiflow. Among these properties, the monotone behavior of the number of zeros of the solutions plays an essential role. This discrete Lyapunov functional, the zero number, contains important information on the spectral behavior of the linearization and leads to the simple description of the dynamical system.
Other systems possess this kind of discrete Lyapunov functional and we review some classes of linear equations that generate semiflows with this property. Moreover, we ask if this property is characteristic of such problems.
This is based on a joint work with Giorgio Fusco.
We present some results on the asymptotic behavior of linear and nonlinear nonlocal evolution problems in rough media, assimilated to metric measure spaces. We analize weak and strong maximum principles for stationary and evolution linear problems. For nonlinear problems with local reaction we discuss global existence, asymptotic bounds and the existence of extremal solutions.
Sharp inequalities have a rich tradition in harmonic analysis, going back to the epoch-making works of Beckner and Lieb for the sharp Hausdorff–Young and Hardy–Littlewood–Sobolev inequalities. Even though the history of sharp restriction theory is considerably shorter, it is moving at an incredible pace. In this talk, we survey selected highlights from the past decade, describe some of our own contributions, and pose a few open problems which lie at the interface of euclidean harmonic analysis and dispersive PDE.
Many nonlinear dispersive partial differential equations exhibit a phenomenon where the nonlinear part of the evolution, in the Duhamel integral formula, is slightly more regular than the purely linear evolution, for the same initial data. This is usually called nonlinear smoothing and is also intimately connected to dispersive blow up. We show how the infinite normal form reduction method, developed in the past few years to prove unconditional uniqueness of initial value problems, can be applied to provide a broad and general approach for establishing nonlinear smoothing of several different dispersive PDEs. This is joint work with Simão Correia.
We study homeomorphisms of surfaces,with emphasys the annulus, trying to characterize when the associated dynamical system has positive topological entropy and rotational entropy. Using topological techniques, we show (with P. Le Calvez) that the presence of any type of shear in conservative settings imply that either the dynamics is near-integrable or it must have rotational horseshoe. For the general case, we show (with A. Passeggi) that if one can find an invariant circloid with sheared dynamics (having non-trivial rotation set), then the dynamics must also have a rotational horseshoe, solving a well known conjecture in the field dating back to the 80s.
We give conditions for the existence of regular optimal partitions, with an arbitrary number
To this aim, we study a weakly coupled competitive elliptic system of
For
Let
The classical thermodynamic formalism, developed in the 1970s by Sinai, Ruelle, and Bowen in the setting of uniformly hyperbolic systems, provides an elegant and remarkably complete theory of the measures of maximal entropy and, more generally, equilibrium states.
In the presence of some invariant structure, one can sometimes define a partial entropy, which measures the complexity of the dynamics along such a structure. Take, for instance, the strong-unstable foliation of a partially hyperbolic diffeomorphism. The corresponding partial entropy is called u-entropy, and there is also a notion of topological u-entropy.
For partially hyperbolic diffeomorphisms that factor over Anosov, we prove several results on the finiteness of measures of maximal u-entropy, the structure of their supports, fast loss of memory (decay of correlations, large deviations), and transverse invariant measures. We also discuss a series of examples, and the relations between measures of maximal u-entropy and measures of maximal entropy.